General decay and lifespan of solutions for a system of nonlinear pseudoparabolic equations with viscoelastic term
نویسندگان
چکیده
In this paper, we consider the Robin-Dirichlet problem for a system of nonlinear pseudoparabolic equations with viscoelastic term. By Faedo-Galerkin method, first prove existence and uniqueness solution problem. Next, give sufficient condition to get global decay weak solution. Finally, by concavity blow-up result when initial energy is negative. Furthermore, establish here lifespan finding upper bound lower time.
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولExistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملExponential energy decay and blow-up of solutions for a system of nonlinear viscoelastic wave equations with strong damping
with initial and Dirichlet boundary conditions. We prove that, under suitable assumptions on the functions gi, fi (i = 1, 2) and certain initial data in the stable set, the decay rate of the solution energy is exponential. Conversely, for certain initial data in the unstable set, there are solutions with positive initial energy that blow up in finite time. 2000 Mathematics Subject Classificatio...
متن کاملAsymptotic Decay of Nonoscillatory Solutions of General Nonlinear Difference Equations
The authors consider themth order nonlinear difference equations of the form Dmyn+qnf(yσ(n)) = ei, where m ≥ 1, n ∈N = {0,1,2, . . .}, an > 0 for i= 1,2, . . . ,m−1, an ≡ 1, D0yn = yn, Diyn = an∆Di−1yn, i = 1,2, . . . ,m, σ(n) → ∞ as n → ∞, and f : R → R is continuous with uf(u) > 0 for u = 0. They give sufficient conditions to ensure that all bounded nonoscillatory solutions tend to zero as n→...
متن کاملRate of Decay for Solutions of Viscoelastic Evolution Equations
In this article we consider a Cauchy problem of a nonlinear viscoelastic equation of order four. Under suitable conditions on the initial data and the relaxation function, we prove polynomial and logarithmic decay of solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: T?p chí ??i h?c Th? D?u M?t
سال: 2023
ISSN: ['1859-4433', '2615-9635']
DOI: https://doi.org/10.37550/tdmu.ejs/2023.05.415